Recruitment of Glycosyl Hydrolase Proteins in a Cone Snail Venomous Arsenal: Further Insights into Biomolecular Features of Conus Venoms

نویسندگان

  • Aude Violette
  • Adrijana Leonardi
  • David Piquemal
  • Yves Terrat
  • Daniel Biass
  • Sébastien Dutertre
  • Florian Noguier
  • Frédéric Ducancel
  • Reto Stöcklin
  • Igor Križaj
  • Philippe Favreau
چکیده

Cone snail venoms are considered an untapped reservoir of extremely diverse peptides, named conopeptides, displaying a wide array of pharmacological activities. We report here for the first time, the presence of high molecular weight compounds that participate in the envenomation cocktail used by these marine snails. Using a combination of proteomic and transcriptomic approaches, we identified glycosyl hydrolase proteins, of the hyaluronidase type (Hyal), from the dissected and injectable venoms ("injectable venom" stands for the venom variety obtained by milking of the snails. This is in contrast to the "dissected venom", which was obtained from dissected snails by extraction of the venom glands) of a fish-hunting cone snail, Conus consors (Pionoconus clade). The major Hyal isoform, Conohyal-Cn1, is expressed as a mixture of numerous glycosylated proteins in the 50 kDa molecular mass range, as observed in 2D gel and mass spectrometry analyses. Further proteomic analysis and venom duct mRNA sequencing allowed full sequence determination. Additionally, unambiguous segment location of at least three glycosylation sites could be determined, with glycans corresponding to multiple hexose (Hex) and N-acetylhexosamine (HexNAc) moieties. With respect to other known Hyals, Conohyal-Cn1 clearly belongs to the hydrolase-type of Hyals, with strictly conserved consensus catalytic donor and positioning residues. Potent biological activity of the native Conohyals could be confirmed in degrading hyaluronic acid. A similar Hyal sequence was also found in the venom duct transcriptome of C. adamsonii (Textilia clade), implying a possible widespread recruitment of this enzyme family in fish-hunting cone snail venoms. These results provide the first detailed Hyal sequence characterized from a cone snail venom, and to a larger extent in the Mollusca phylum, thus extending our knowledge on this protein family and its evolutionary selection in marine snail venoms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cone shell envenomation: epidemiology, pharmacology and medical care.

The marine environment presents much danger, specifically in regards to the numerous venomous inhabitants within tropical and subtropical waters. The toxins from one such group of venomous marine snails, commonly referred to as 'cone snails', have been well documented in causing human fatalities. Yet information regarding medical treatment for cone snail envenomation is limited and poorly acces...

متن کامل

Venomous auger snail Hastula (Impages) hectica (Linnaeus, 1758): molecular phylogeny, foregut anatomy and comparative toxinology.

The >10,000 living venomous marine snail species [superfamily Conoidea (Fleming, 1822)] include cone snails (Conus), the overwhelming focus of research. Hastula hectica (Linnaeus, 1758), a venomous snail in the family Terebridae (Mörch, 1852) was comprehensively investigated. The Terebridae comprise a major monophyletic group within Conoidea. H. hectica has a striking radular tooth to inject ve...

متن کامل

Toxinology of Marine Venomous Snails

A surprisingly large number of sea snail species are venomous. Cone snail venoms are produced in a lengthy tubular duct from a complex venom gland and form a cocktail of many toxins, particularly conotoxins which have high potency and specificity for their target specific receptors. They inhibit various channels, neuromuscular receptors or hormones of the victim, and interfere in the transmitte...

متن کامل

Using Chemistry to Reconstruct Evolution: On the Origins of Fish-hunting in Venomous Cone Snails

HEMICAL COMPOUNDS derived from living organisms are similar to non-biological substances in that their composition and structure can be characterized, and many can be directly synthesized by standard chemical methods. However, biological compounds are fundamentally different in that each has an underlying evolutionary history. We describe several compounds from an unusual source, the venoms of ...

متن کامل

An efficient transcriptome analysis pipeline to accelerate venom peptide discovery and characterisation.

Transcriptome sequencing is now widely adopted as an efficient means to study the chemical diversity of venoms. To improve the efficiency of analysis of these large datasets, we have optimised an analysis pipeline for cone snail venom gland transcriptomes. The pipeline combines ConoSorter with sequence architecture-based elimination and similarity searching using BLAST to improve the accuracy o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2012